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Multiple Sclerosis requires long-term disease management, but tracking patients through the use of clinical surveys is hindered
by high costs and patient burden. In this work, we investigate the feasibility of using data from ubiquitous sensing to predict
MS patients’ fatigue and health status, as measured by the Fatigue Severity Scale (FSS) and EQ-5D index. We collected data
from 198 MS patients who are given connected wellness devices for over 6 months. We examine how accurately can the
collected data predict reported FSS and EQ-5D scores per patient using an ensemble of regressors. In predicting for both
FSS and EQ-5D, we are able to achieve errors aligning with the instrument’ standard measurement error (SEM), as well as
strong and significant correlations between predicted and ground truth values. We also show a simple adaptation method
that greatly reduces prediction errors through the use of just 1 user-supplied ground truth datapoint. For FSS (SEM 0.7), the
universal model predicts weekly scores with MAE 1.00, while an adapted model predicts with MAE 0.58. For EQ-5D (SEM
0.093), the universal model predicts weekly scores with MAE 0.097, while an adapted model predicts with MAE 0.065. Our
study represents the first sets of results showing that fatigue and health state of MS patients can be measured using data from
connected wellness devices and a small number of background features, with promising prediction performance with errors
within the accepted range of error in the widely used clinically-validated questionnaires. Future extensions and potential
applications of our results can positively impact MS patient disease management and support clinical research.

CCS Concepts: • Human-centered computing → Empirical studies in ubiquitous and mobile computing; • Com-
puting methodologies→ Supervised learning by regression; • Applied computing→ Health informatics.
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1 INTRODUCTION AND BACKGROUND
Over 2.5 million people worldwide are affected by Multiple Sclerosis (MS), in many countries it is the most
common cause of neurological disability in young adults [19]. Multiple Sclerosis is associated with significant
health-related and economic burden to the quality of life [7]. As there is currently no cure for MS, the complexity
of MS demands that patients be active in their management of symptoms and receive support for it [5].
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Managing MS mainly involves keeping track of clinical outcomes. Overwhelming fatigue is one of the most
commonly reported symptom of MS [6]. MS fatigue is very different from normal forms of fatigue and has a
profound impact on patients’ quality of life [29]. Faitgue is monitored by patients for self-management of the
symptom, and is also monitored through survey instruments in clinical trials to demonstrate the efficacy of MS
drugs [8]. A large body of research also exists to address correlations between fatigue and other physiological
factors and behavioral factors (e.g exercise [29]). However, since data collection is costly and slow, in longitudinal
studies of MS fatigue, FSS may only be collected annually for 2-3 years.

For medical and economic researchers, another important measurement to collect is the Health-Related Quality
of Life (HRQoL). Policymakers make use of HRQoL to evaluate the effectiveness of health interventions in order to
allocate resources effectively [3]. For MS, this means allocating more resources to treatment that leads to a delay
in patients’ progression to permanent disability, over treatment which only temporarily avoids disability [7].

Longitudinal tracking of these metrics are consequential to the resource allocation decision making, however
frequent data collection involves high costs so researchers typically rely on economic modelling techniques [7].
Motivated by this, we propose a study looking into tracking fatigue and health state unobtrusively in the daily
lives of MS patients through the use of connected wellness devices, in addition to a small number of day questions
and background features. We are interested in applying machine learning techniques in delivering accurate
predictions of patients’ fatigue and health state over time in a low user burden fashion, which could support
patient’s self-management and further understanding of more dynamic patterns of these health indicators.
We conducted a 6-month study of 198 MS patients which collected their behavioral, physiological and self-

reported health information. Each patient was given 3 connected wellness devices (sleep tracker, smart scale,
smart watch) to use in their natural environments, these collect daily behavioral and physiological data of the
patient. Each patient completed a background questionnaire; In addition, through a companion app, patients
may fill in daily evaluations of fatigue and sleep quality, as well as weekly questionnaires containing the FSS
and EQ-5D. In this work, we focus on the task of predicting FSS and EQ-5D scores reported each week by each
patient. We propose using an ensemble of predictors per data source to handle issues arising from missing sensor
modalities and perform a series of experiments to demonstrate the suitability of our approach. We also perform
an additional task where we predict the mean FSS and EQ-5D scores spanning all weeks reported by a patient.
The main contributions of this work are as follows:

• First study predicting MS patients’ reported fatigue severity scale (FSS) using data from connected devices,
background information and daily questions at weekly intervals. We show that FSS (instrument error SEM
0.7) can be predicted with MAE 1.00 (r=0.58) with an unadapted ensemble model, which requires zero FSS
survey response from the target patient at test time. Our adapted model (calibrated using 1 FSS survey
response from the target patient) can predict FSS with MAE 0.58 (r=0.81).

• First study predicting MS patients’ reported EQ-5D health state using data from connected devices, back-
ground information and daily questions at weekly intervals. We show that EQ-5D (SEM 0.093) can be
predicted with MAE 0.097 (r=0.43) with an unadapted ensemble model, which requires zero EQ-5D survey
response from the target patient at test time. Our adapted model (calibrated using 1 ED-5D survey response
from the target patient) can predict EQ-5D with MAE 0.065 (r=0.77). These results are promising as they
are within scales of the instrument error and also correlate significantly and strongly with ground truth.

• We also predict the per-participant averaged scores for FSS and EQ-5D over the 6-month study period,
which represents a more stable view. We show that the mean FSS can be predicted with MAE 0.93 (r=48),
and mean EQ-5D can be predicted with MAE 0.091 (r=39). Again, these are universal models able to be
used by any patients without them providing any FSS or EQ-5D survey response.

• Discovery of important contextual background features of multiple sclerosis patients (e.g. age, disability
level) which are seen by our models as important in predicting FSS and EQ-5D scores.
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• Investigation of the sensitivity in varying different design choices of our prediction framework, such as
time window length and considered data sources.

• Discussion and summary of insights from current study in related directions that we believe will be valuable
for evolving the design of predictors of MS-related outcomes in the future.

2 RELATED WORK
This is increasing interest in using sensing technology to aid Multiple Sclerosis disease management. Numerous
pilot studies have been carried out to explore the feasibility of deploying passive sensing in MS patient’s natural
environments so that longitudinal assessment of their symptoms could be performed. However, the focus of
many such studies tend to be in exploring the feasibility of data collection using passive sensing and analyzing
the correlations. [12] explored using real-time depth sensors at home to identify gait problems and falls in 21
MS patients. [21] used activity sensors to determine the physical activity level of 11 MS patients, and correlated
their daily activity fluctuations to disability changes in MS patients. Certain technologies have already been
developed for MS monitoring and management which are complementary to traditional in-clinic approaches. MS
Mosaic is a smartphone app that allows MS patients to track their symptoms over time by manually reporting
their symptoms (e.g. Fatigue) and also integrating health and fitness data available on smartphones to monitor
symptom triggers. Floodlight is another smartphone app, which tracks changes in MS over time through ‘active
tests’ of patients performing daily simple tasks on the app. [2] have reported the results from the same dataset
studied in our work, but with basic analytic results about correlations between expected fatigue changes and
behavioral measurements. The bulk of prior studies demonstrate the monitoring of user behaviors like steps,
sleep hours etc. that are indirect measurements of symptoms and without any way to translate into a clinical
understanding currently. As far as we know, no technology has been developed for tracking fatigue and health
state as measured in terms of the FSS and EQ-5D-5L.

Closely related to our work are which have utilised passive sensing in monitoring symptoms for general health
and other diseases, many of which have been carried out to reproduce predictions for clinically-validated self-
report survey instruments [16]. More recently, Wang et al develops a prediction system that tracks schizophrenia
symptoms based on a standard instrument using passive sensing from mobile phones, they were able to accurately
predict reported schizophrenia scores using Gradient Boosted Regression Trees (GBRT) [26]. Wang et al proposed
a set symptom features from wearables and smart phones to track college student’s level of depression [27], they
used generalized linear mixed model (GLMM) to predict self-reported depression scores and found correlations
between their proposed symptom features and depression scores. Other than disease monitoring, a number of
studies have also been carried looking into monitoring of more general wellness indicator, since this could be
applied to the general non-clinical population, the sample dataset sizes studied could be much bigger, therefore
also allowing more advanced techniques to be applied (e.g. deep neural networks). Veličković et al analyzes
multimodal time-series data and predicts the ability to achieve weight objective for users of smart connected
devices using deep long-short-term memory architectures [25].

3 OUR STUDY AND DATA
This section introduces the study carried out and the dataset.

3.1 Multiple Sclerosis Study
We conducted a 6-month study with 198 patients diagnosed with Multiple Sclerosis from November 2016 to May
2017. The participants were based in the United States and were recruited online for a study to understand their
MS condition through use of connected health devices, which may be kept by the participants after the study.
Data from each participant is collected through the following means:
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(1) Entries to a screener survey
(2) Measurements collected through use of connected wellness devices
(3) Entries to week questionnaires

In addition, entries to day questions are optionally provided by participants - we also use this in our framework
to learn patterns but, as we shall describe in later sections, this is not a necessary piece of information to collect
aside from the device data measurements for the considered predictive modelling tasks, and we do not assume
the general user to provide this information.
To simulate conditions corresponding to natural usage, participants are free to deploy the devices and fill

in information as frequently or infrequently as they prefer. All data recorded during the study was analyzed
anonymously. We now describe the collected data in more detail.

Background questions. Before the commencement of the study, all participants completed a screener survey
to give background information about their health. Information from these background questions is treated as
static, forming the only non-time-varying component in our analyzed dataset. The survey collected self-reported
socio-demographic variables and clinical variables. All of the collected variables are categorical with the exception
of age, height and number of years with MS.

• Socio-demographic variables. This collects data on demographics, the patients’ understanding of MS, use of
technology to monitor health, as well as the patient’s mode of financing treatment.

• Clinical variables. This collects data on the patient’s MS, symptoms experienced, other co-existing diseases,
and their treatment method. Variables from symptoms and co-existing diseases are dichotomized into yes
or no, so only a binary indication of whether symptoms/disease are present is available.

Device measurements. Each participant received three products from theWithings range: a sleep tracker, a
weighing scale and a smart watch [1]. Measurements from these devices recorded within the study period (total
of 189 days) were extracted for analysis. Device usage varies, with the participants contributing a mean of 122.8
days with at least one valid device measurement; three participants produced no valid device data at all during
the study period.
The wellness devices provide measurements relating to sleep, activity and other physiological information,

which are well-placed to capture the time-varying quality of MS. All measurements are in daily resolutions, and
were inferred from theWithings applications through use of the devices. An example measurement is the step
count of a day, as opposed to a accelerometer time series throughout the day. In this example, the smart watch’s
commercial-grade machine learning algorithms have been involved in producing this measurement from raw
signals; These algorithms are supervised learning methods trained from hundreds of controlled subject data
collections, which are then released and used on in-the-wild data for millions of Withings users.

• Withings Aura (sleep tracker). Aura consists of two devices, a sleep sensory pad underneath the mattress,
and a bedside device with environmental sensors which also act as an alarm clock, speaker and lamp. We
consider sleep measurements recorded by Aura.

• Withings Activité Steel (smart watch). The Activité Steel is a wearable device which tracks activities (gait,
running, swimming and sleeping). We only collect data on gait and sleeping as proxies to participants’
activities and sleep respectively. We keep sleep measurements recorded by Aura and the watch separate, in
accordance with the procedure taken in similar situations [28].

• WIthings Body Cardio (smart scale). This scale provides readings on weight, composition and heart health.
The scale also provides pulse wave velocity (PWV), the rate at which blood pressure pulse propagates
through the circulatory system, which is an important clinical parameter for evaluating cardiovascular risk
[15]. The scale can be set up for separate users in case the participant’s family also use it, but only data
from the participant’s profile was collected.
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• Health Mate App. This is a commercial app for managingWithings devices currently used by millions of
users. A user profile syncs data from the devices and allows the participants to review their data and set
goals [13]. In our study, the app also sends notifications to the participants and act as a portal of access to
the questionnaires.

Week questionnaires. Each participant receives a notification from the app every week prompting him/her to
complete a week questionnaire. The questionnaire is formed of two standard questionnaire instruments: FSS and
EQ-5D-5L. Both are clinically validated instrument widely used in MS study and management. In our dataset,
1693 weekly surveys were completed, but 24 participants did not complete any weekly surveys at all. We describe
the questionnaires in detail:

• Fatigue Severity Scale (FSS). The FSS is a 9-item questionnaire. The items relate to fatigue severity, its effects
on the subject’s activities and lifestyle, as well as its emotional burden. The responses are rated on a 7-point
Likert scale, and the overall FSS score is taken as the mean of the 9 responses. The overall score ranges from
1 to 7, where a higher score corresponds to higher levels of fatigue. A number of studies have been carried
out validating the FSS instrument, the standard error of measurement (SEM) of FSS was suggested to be 0.7
points, meaning a change of less than 0.7 points may be due to measurement error of the instrument [11].

• EQ-5D-5L index value. EQ-5D covers 5 dimensions of health: mobility, self-care, usual activities, pain/discomfort,
and anxiety/depression [24]. The EQ-5D-5L index is a single index value computed from the EQ-5D-5L
system, which describes a person’s health state relative to others in the country. The conversion from the 5
dimensions to a single value is done using publicly available country-specific value sets, and in this case,
US-specific [23]. The 5Q-5D-5L index value ranges from 0 to 1, with 0 meaning death and 1 complete health
[17]. The SEM of FSS was suggested to be 0.093 [14].

A complete response to every question on the questionnaire (from both instruments) is required to qualify as
a valid response. We use the FFS and EQ-5D-5L index scores as our ground truth. We use the notation FSS-W
and EQ-W to refer to the FSS score and EQ-5D-5L index value obtained from each weekly survey respectively;
and we use FSS-M and EQ-M to refer to the mean per-participant score of FSS-Ws and EQ-Ws obtained from
all weekly surveys completed by each participant. In total, 1693 weekly surveys were completed, however 24
participants did not complete any weekly surveys at all.

Daily questions. The daily questions are attempted by 73 participants. The low participation rate (fewer than
half the subjects) may be because we framed the daily questions as an optional part of the study. At the beginning
of the study, every participant received a welcome message from the app which asked if he/she would like to
receive daily notifications about these items for the rest of the study. A daily notification setting might have
seemed excessive to the participants so only 73 subjects accepted.
These daily questions are informal prompts (i.e. not clinically validated instruments like the week question-

naires) asking patients to rate their fatigue and sleep quality. The subject may indicate this on a 5-point Likert
scale, from No to Extreme Fatigue, and Very Good to Very Bad Sleep. Each question is prompted independently
through the app, so a patient can answer only one or both of these questions per day, we thus treat data from
each question as a separate source. In total, 3316 daily questions are reported by 73 participants.
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Table 1. Our considered dataset of 151 patients and 1401 labelled examples. In (b), within each source s , Np(s) is the number
of patients, Nw (s) the number of examples and F(s) the number of features. Background features are a special case as they
are always present so Np,w (backдround ) = Np,w .

(a) Patient demographics and reported scores.

Item Distribution

Age From 22 to 75 years, mean 44 years
Gender 141 females, 10 males
Type of MS 146 RRMS, 3 SPMS, 1 PPMS, 1 PRMS
Years with MS From 0 to 44 years, mean 10 years
Disability 48 normal, 52 mild disability,
level 34 moderate disability, 34 gait disability,

29 early cane
FSS score mean 5.14, standard deviation 1.41
EQ-5D score mean 0.745, standard deviation 0.147

(b) Data distribution from each source.

Source Np(s) Nw (s) F(s)

Aura 118 914 55
Scale 94 609 35
Watch 87 501 45
Fatigue q. 62 556 5
Sleep q. 62 510 5
Background q. 151 1401 77

3.2 Dataset
We describe the steps taken in creating a dataset for training a machine learning model to predict FSS and EQ-
5D-5L. Our goal is to construct a labelled dataset D = (X,Y), with Nw labelled examples. X are the aggregated
features from different data sources and Y are the score labels. We preprocess the data, then identify time
windows for aggregation into features, and collect ground truth.

Preprocessing. We set sensible criteria on to remove obvious outliers (e.g. unrealistic heights, sleep duration
of over 20 hours) and replace with the population mean.

Ground Truth. To obtain ground truth, we consider all completed week questionnaires and obtain the
corresponding overall FSS score (FSS-W) and EQ-5D-5L index (EQ-W) for each questionnaire.

Feature Set Construction.
To obtain features from time-varying data sources (devices and questions), we consider for each week ques-

tionnaire a time window of d days up to the day that it was filled out.
Our inclusion criteria is as follows: We first disregard 4 subjects who have fewer than 90 days of device

measurements and 24 subjects who did not complete any week questionnaire. We then disregard time sequences
which do not have entries from at least 1 time-varying source for at least 1 day within the time window. Finally,
we only consider the remaining valid time sequences and their associated subjects. Setting d = 10, this results in
Nw = 1401 labelled sequences from Np = 151 subjects. Table 1 describes the demographics and ground truth
provided by these subjects.
We compute 5 features from each sequence: maximum, minimum, mean, standard deviation and count. The

maxima, minima, means and standard deviations describe the patient’s extremes, average, variation of behaviour
and physique during the time window. Finally the count captures the level of usage of a device or a function by
the patient, for example the count of sleep duration recorded by the watch is the number of times the subject
wore the watch to sleep.

Apart from the time-varying sources, we also have static information from each subject through their responses
to the background questions. We include these features into consideration for every labelled example in our
dataset. An overview of the feature set construction procedure is shown in Figure 1.

Source-Specific View. Since the patients rarely use all devices during one time window, there are often many
missing features in one labelled example due to absent sources. To avoid this, we take a source-specific view
and denote D = {D(s)}, s ∈ S, where S is a set of considered sources. Unless stated otherwise, S are 6 data
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sources: Aura, Scale, Watch, Fatigue question, Sleep question and Background questions. We use the subscript (s)
to denote items that are source-specific. In this view, the dataset D(s) only contains the labelled examples in D

where features from s must be present, specifically its feature set is X(s) ∈ RNw (s)×F(s ) , where Nw (s) ≤ Nw is the
number of examples with features from source s and F(s) is the total number of features from source s prior to
any feature selection. Table 1 lists the source-specific numbers.

4 OUR LEARNING FRAMEWORK
This section introduces our approach in modelling patients’ data to predict their reported fatigue and health state.

4.1 Problem Statement
We consider a regression task to predict a patient’s FSS-W and EQ-W scores. With a feature set computed from
a patient’s unobtrusive data collected from wellness devices and self-report data, the goal is to assign to it a
corresponding ground truth survey score. In particular, we predict the patient’s FSS-W and EQ-W scores; we
treat these as two independently tasks which adheres to the same learning framework.

We assume a leave-one-subject-out cross-validation setting, so themodel is trainedwithDtrain = (Xtrain ,Ytrain),
the training dataset of examples belonging to all but the test subject, and tested on Dtest = (Xtest ,Ytest ), which
consists only of examples belonging to the test subject. In other words, at test time, the trained model would
require the following from a test user to make a prediction:

• measurements from connected devices
• a small number of background features
• entries to daily questions (only if these are provided by the test user)
• zero FSS or EQ-5D survey response (as the model is trained only with examples from train-set users)

In case of model adaptation, one FSS or EQ-5D survey response from the test user will be required.
The results from a leave-one-subject-out setting shows the prediction performance of predicting a new patient

whose data has never been seen by the trained model. We adopt this setting because it is more aligned to the
potential use case where patients beginning to monitor their health passively can do so immediately as they start
generating data on their wellness devices.

4.2 Our Framework
In each fold of leave-one-subject-out cross validation, we perform the following:
(1) Perform feature selection on each source-specific dataset Dtrain

(s) ;
(2) Train a regression model M(s) on each Dtrain

(s) , using only the selected features;
(3) Test each model M(s) on the corresponding Xtest

(s) to give prediction Ŷ(s);
(4) Aggregate predicted scores Ŷ(s) from all sources to output Ŷ;
(5) (If Adapt) Transform predictions using reported score of the test subject’s first labelled example Ytest

0 .
We now discuss our approach in more detail.

Ensemble Approach to Missing Data. As features from multiple modalities are present to a varying degree
in our dataset, it is desirable to learn accurate models which can leverage information from multiple modalities
while considering as many datapoints as possible. We adopt an ensemble learning structure formed of predictors
which focus on different spectrums of the datasset with high data concentration. In effect this is an ensemble
of base predictors trained specifically with features coming from the same modality or source. As illustrated in
Figure 1, a major advantage of using an ensemble is that datapoints with different missing modalities can be
considered.
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regressor(Aura)

regressor(Watch)
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User takes his/her  
ith week questionnaire
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Screener Survey selected features
(Background), i

days with data

days without data

Fig. 1. Schematics showing our learning pipeline for one labelled example. The left part of the figure illustrates the feature
construction procedure from 5 time-varying sources (aura, scale, watch, fatigue q., sleep q. ) and 1 static source (screener
survey). Each horizontal bar represents the sequence of measurements given by each time-varying source from the beginning
till the end of the study. We consider a time window of d days up to the date that the subject completes a week questionnaire,
and if there is enough data within the window, it is aggregated to produced selected features. The right part of the figure
illustrates the ensemble model which then proceeds to perform regression per source and finally combines the predictions
to give one predicted score. In the above example, only features from aura, watch and background questions are present.
Images of Withings devices sourced from [1].

Base Regression Model. The specific base regressor model adopted in our study is the AdaBoost Regressors
[4]. Adaboost Regressors itself is an ensemble method which fits predictors sequentially on a given dataset by
setting weights to the predictors and the datapoints such that the subsequent predictors focus more on difficult
cases. As Adaboost is also a tree-based method, it produces a value of relative importance for each input feature,
this is known as the importance vector to be used for feature selection.

Feature Selection. We perform feature selection in every fold of leave-one-subject-out cross validation. In each
fold, the train dataset of every source, Dtrain

(s) , is fed into an Adaboost which generates an importance vector.
We obtain the selected features for each source by performing k iterations where we retain features with an
importance above the mean importance of the remaining features. The higher k is set, the fewer the number of
resulting features. Since we have the highest number of features to begin with for background questions, we set
k to be higher for background questions; this gives better performance as we shall show.

Aggregating Source-specific Predictions. In combining the predictions given by each modality, we put to
use the resulting feature importance vector generated in the feature selection phase. We compute the mean
feature importance per source and use it as a weighting factor. We normalize the mean importance with softmax
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function, the final prediction of a labelled example Xi is given by:

Ŷi =
∑
s ∈Γi

wsŶ(s)i where ws =
exp( Ŷ(s)i f̄s )∑

s ∈Γi exp( Ŷ(s)i f̄s )
(1)

where f̄s is the averaged importance of features from source s , and Γi is the set of sources that are present in
Xtest
i .

Adaptation to the individual. We consider adaptation techniques to improve generalization of the model
through use of small amounts of data specific to an individual.
We propose a simple adaptation strategy involving a translation using each subject’s first recorded residual

error. This is motivated by the observation that many predicted scores were consistently off by some similar value
for datapoints belonging to the same subject. The simple transformation introduces a bias using the subject’s
first completed weekly questionnaire, and then applies an adjustment to the bias onto all subsequent predictions
given to that subject. In effect, we apply a scalar translation of the prediction according to the residual error of
the first week. For predictions in the subsequent weeks i ≥ 1,

Ŷ ′
i = Ŷi + b0 where b0 = Ytest

0 − Ŷ0 (2)

note, we order datapoints belonging to the same subject chronologically in Y such that Ytest
0 refers to the test

subject’s first reported label.
We also consider an alternate adaptation strategy based on Gaussian Mixture Models (GMM) [18]. The

method was originally proposed for speaker classification, and we adopted the formulation for Gaussian Mixture
Regression (GMR) models instead [22] (the base regressor in our ensemble model becomes GMR). The core idea
of the adaptation is to update the parameters of a general GMR using Maximum A Posterior according to some
small amounts of labelled examples from the test user. As shown in later experiments, this adaptation strategy
gives worse performance than the residual error method.

5 TRACKING MS HEALTH DYNAMICS: EXPERIMENTS AND ANALYSIS
We perform a series of experiments to examine our model’s prediction of patients’ FSS-W and EQ-W scores.

5.1 Experimental Setup

Model Settings. In the rest of this section, we refer to the ensemble model introduced in Section 4.2 as ‘our
model’, and its residual error adapted version as ‘our model (res. error adapted)’. Unless stated otherwise, we adopt
the unadapted model with the following settings by default. For the purpose of fully exploiting our dataset, we
use data from all sources by default S = {Aura, Scale, Watch, Fatigue q., Sleep Q., Background q.}. As a result,
our ensemble model consists of 6 base regressors, each as an adaboost regressor. We set the considered time
window length to d = 10 days. Our feature selection process performs k = 1 iteration for all sources except
for background questions, for which we use kbackдroundq . = 3 in predicting FSS-W and kbackдroundq . = 2 for
predicting EQ-W.

Evaluation. As baseline, we use a hypothesized model which always predicts the global mean (mean of Ytrain

in each fold). We evaluate the prediction performance with leave-one-subject-out cross validation, and report
using mean absolute error (MAE) and Pearson correlation coefficient (r). MAE assesses the absolute difference
between predicted and ground truth scores across the entire population. For FSS this is with reference to a score
that ranges from 1 to 7, and for EQ-5D from 0 to 1. Pearson correlation coefficient r gives the correlations between
predicted and ground truth scores across the entire population, where p-value indicates the statistical significance
of the coefficient. Throughout our text, we use ∗ to denote significant correlations with p < 0.0001.
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Table 2. Results of our model predicting FSS-W and EQ-W.

FSS-W EQ-W
Model MAE r MAE r

Our model 1.00 0.58* 0.097 0.43*
Our model (Res. error adapted) 0.58 0.81* 0.065 0.77*

Baseline 1.12 - 0.110 -

Fig. 2. CDFs of per-patient MAE obtained in predicting FSS-W and EQ-W.

5.2 Prediction Performance
Table ?? shows the MAE and Pearson correlation for our models in predicting the weekly scores FSS-W and
EQ-W. In both tasks, both the unadapted and adapted models outperform baseline and achieve significant and
strong correlation with ground truth. The adapted models achieve the best results with MAE 0.58 for FSS-W and
MAE 0.065 for EQ-W respectively, which are both below the inherent error of the instruments (SEM 0.7 for FSS
and SEM 0.093 for EQ-5D). The result shows our existing pipeline can accurately predict patients’ FSS-W and
EQ-W scores. Figure 2 shows a comparison of the cumulative distribution of the per-person mean absolute error
in greater detail, where we see that the residual error adapted model performs better than the unadapted mode,
but both outperform the baseline.

Within-person time series view. Figure 3 shows the performance of the models when viewed on a week-to-
week level within a patient. The 8 patients presented have achieved the best, 75th percentile, 25th percentile
and worst result using our unadapted model for each task, where the nth percentile means the patient’s MAE is
better than n% of the studied population. We use these patients to illustrate cases where our model performs
better and worse.
Patient (a-iv) , where the FSS-W model performs worst, might be a case of unreliable ground truth as the

patient fills out the questionnaire the same way every week and reported the same score of 1.0 for 16 weeks.
While our unadapted model also predicted a more or less stable weekly result for this patient, our residual-error
adaptation method was able to correct the offset and reduced MAE from 3.1 to 0.08. In our dataset we observe 5
other patients who reported the same FSS-W value every week, and their MAEs were reduced by an average of
43% after residual-error adaptation was applied.

We further observe that both models perform worse for patients who reported lower scores (Patients (a-iii),
(a-iv) and b(iv)), which is related to the unbalanced distribution of scores in our dataset. Our dataset is skewed
towards higher scores (90% of the reported scores are ≥ 4 for FSS and ≥ 0.5 for EQ-5D), thus the models are
undertrained for lower scores and result in an overestimation. Therefore, it is especially in these low-true-score
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(a) FSS-W

(b) EQ-W

Fig. 3. Time series view of predicted vs reported FSS-W and EQ-W scores. An uncertain region is coloured in orange to
denote the standard error of the instrument (SEM). In each row, from left to right are the patients with the best to the worst
predicted MAEs. The horizontal axis denotes the number of weeks since the patient first started using any of the provided
devices.

cases that the residual adaptation method work best, since the residual error of the first week would account for
an estimation of the offset between high-score and low-score patients.

Matching polarity in week-to-week changes. Through visual inspection of Figure 3 we observe that the
predictions made by our models are also able to reflect the week-to-week fluctuations of the weekly score; for
example, even in the most challenging cases the model was able to detect changes in polarity of the trend of user
scores from week to week.

For the prediction results to be useful to patients on a week-to-week basis, we investigate whether the polarity
of the changes in consecutive predicted scores reflects the truth. For example, if our model predicts that a patient
has FSS-W 7.0 in week 0 and FSS-W 6.0 in week 1, the predictions can capture the trend of his/her fatigue if
the patient also reported a higher score in week 0 than week 1. To investigate this, we consider significant gaps
(|Yi+1 − Yi | ≥ SEM) in consecutive scores, and report the polarity accuracy as the percentage of times that the
polarity of the predicted gap matches that of the true gap. Figure 4 shows that this accuracy increases as the
predicted gap increases, meaning the model is increasingly confident as it predicts larger gaps. As illustrated by
the vertical lines in Figure 4, we also note that the averaged predicted and reported gaps are very similar, for
FSS-W they are within 0.9% and for EQ-W 5.0%. This results gives us confidence to track these scores every week.

Available Sources. Figure 5 shows the prediction errors for the datapoints when features from all sources (i.e.
all daily questions and all devices), only daily questions or only devices are available. For both FSS-W and EQ-W,
we find that datapoints considering all sources can be predicted with the lowest MAEs, suggesting that missing
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(a) FSS-W (b) EQ-W

Fig. 4. Comparing the polarity of gaps found in our predicted and ground truth scores. The horizontal axis is д, the magnitude
of a gaps between consecutive predicted scores, and the vertical axis is the percentage of times that a gap with magnitude
≥ д correspondes to the correct polarity. The orange vertical line is the mean magnitude of significant gaps in the ground
truth scores, while the black line is that in the predictions.

Fig. 5. Mean absolute error for weeks when features from all sources, only questions or only devices are available.

modalities does play an role and the model benefits from having features from different sources. However, the
difference in MAEs between ’all’ and ’devices’ is small in both cases (2.6% for FSS-W and 2.1% for EQ-W), this
suggests the benefits brought by features from daily questions is limited and the models can perform well even
when they are absent.

5.3 Sensitivity Analysis

Importance of background features. As described in Section 3.1, 77 background features were collected
for each subject. In Table 3, we vary the number of background features taken as input to our model, through
adjusting the number of feature selection iteration steps k , which we found to be optimal when set at k = 3 for
FSS-W and k = 2 for EQ-W. The selected background features are listed in Table ??.
Having background features is crucial for predicting FSS-W and EQ-W in MS patients, as we observe that

MAEs increases by an average of 12% when they are absent. However, it is interesting to note that only a small
number of background features (4 to 6 features) is needed for good performance. These selected background
features (e.g. disability level) can be understood as providing the most important contextual information about
each patient; This is necessary for our models to effectively account for their individual differences, and as a
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Table 3. Importance of background features. Selected features here refers to the features selected in more than half of the
folds in the leave-one-subject-out cross validation.

Include FSS-W EQ-W
background features k No. of selected features MAE r No. of selected features MAE r

1 23 1.02 0.53* 22 0.098 0.47*
2 8 1.02 0.58* 6 0.097 0.43*
3 4 1.00 0.58* 2 0.098 0.40*
- - 1.12 0.29* - 0.110 0.10*

Table 4. Comparing considered devices, #p < 0.05.

Considered FSS-W EQ-W
sources MAE r MAE r

Background q. 1.22 -0.43# 0.175 0.31*
Aura, background q. 1.04 0.45* 0.097 0.48*
Scale, background q. 1.05 0.47* 0.098 0.47*
Watch, background q. 1.05 0.50* 0.097 0.51*

Aura, Scale, Watch, background q. 1.02 0.45* 0.098 0.43*
Aura, Scale, Watch 1.16 0.16* 0.110 0.07#

Table 5. Comparing grouping formulations.

FSS-W EQ-W
Framework Group by MAE r MAE r
Ensemble Data source 1.00 0.58* 0.097 0.43*
Ensemble Modality 1.05 0.47* 0.098 0.38*

Concatenation - 1.06 0.41* 0.100 0.48*

result leads to better predictive performance and generalization. We believe that the importance of background
features relates to MS being a highly individual condition which varies greatly from person to person.

Effect of devices. In Table 4 we provide the comparison in performance of our model using data from different
device sources. For FSS-W, models considering features from one device are on average 3% worse than a model
considering features from all 3 devices, which indicates predictions benefit from having features from different
devices. For EQ-W, models considering features from one or all devices perform on a similar level, which is a
promising observation as it indicates that features from just one single device can be enough to predict EQ-W, as
long as some background features are available too.
We also extend our discussion of the importance of background features in the context of device data. We

observe that MAEs increase by an average of 13% when device data is used without background features, which
is consistent with our previous sets of results presented in Table 3. Importantly, we find that device data is of
greatest value to the modelling of FSS-W and EQ-W when used in conjunction with background data - using
device data allows for computation of week-to-week variations resulting in predictions such as those presented
in Figure 3, while using background features provides the context information to adjust for differences amongst
individual patients.

Ensemble approach vs concatenation. Table 5 shows that an ensemble approach outperforms a simple
’concatenation’ framework which considers features from all data sources in a single concatenated vector
containing data from all sources (filling missing values with means), which is then trained using an Adaboost
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Table 6. Comparing time windows.

FSS-W EQ-W
d MAE r MAE r
5 1.05 0.50* 0.100 0.38*
7 1.04 0.49* 0.099 0.39*
10 1.00 0.58* 0.097* 0.43*
14 1.01 0.53* 0.099* 0.35*
21 1.00 0.55* 0.098* 0.41*

Table 7. Comparing adaptation strategies.

Adaptation No. of weeks FSS-W EQ-W
strategy to adapt MAE r MAE r

- 0 1.00 0.58* 0.097 0.43*
Residual error 1 0.65 0.82* 0.065 0.77*
GMM-MAP 1 0.90 0.58* 0.091* 0.52*
GMM-MAP 6 0.78 0.53* 0.080* 0.53*

Table 8. Results of our model predicting FSS-M and EQ-M.

FSS-M EQ-M
Model MAE r MAE r

Our model 0.93 0.48* 0.091 0.39*
Baseline 1.03 - 0.100 -

Regressor. Within the ensemble framework, we also explore differences in performance between grouping the
data by its source (devices and day questions) versus further dividing into modalities. Diving into modalities here
means grouping measurements which are meaningful together or always appear together, for example, grouping
the gait and sleep measurements provided by the smart watch as two separate modalities because gait and sleep
measurements relate to two very distinct behaviors. We observe that the ensemble model works better with the
data source grouping.

Effect of window length. Table 6 shows the effect of varying the length d of the time window considered
for computing the time-varying features. We observe that for FSS-W, the model performs better when the time
window consists of more than 7 days, while for EQ-W the optimal lies at 10 days. Since both survey instruments
ask the patients to reflect upon their health status in the past week, we expect that the time window for extracting
readings should be of similar scales, this aligns with our observation that the optimal length is 10 days.

Effect of adaptation. We compare the adaptation strategies of residual error translation against a Maximum A
Posterior approach used with Gaussian Mixture Models (GMM-MAP). For GMM-MAP, we adapt the parameters
of a model that has been fitted using Dtrain by considering the first n labelled examples of the test patient.
Table 7 highlights that using the simple residual error adaptation strategy is a pragmatic approach which

works effectively in personalizing the model to individual patients. To ensure this adaptation is effective, we also
consider the changes in MAE per person before and after applying the translation. Out of 151 tested subjects, 3
and 4 patients experienced a significant increase in MAE (above the instrument SEM) post-adaptation for FSS-W
and EQ-W respectively. The reason behind such worsening performance is that these patients’ first recorded
week is an outlier to the rest of his/her scores, differing by a mean of 44%. It is possible that the adaptation
could benefit from a recalibration, or even future consideration of giving prompts to inform the patient that their
current week would be used as calibration.

5.4 Other Analysis
In this subsection, we consider another application of our framework: predicting the overall mean FSS and EQ-5D
score per person. We present the model performance results and also perform an investigation into the selected
features in all considered tasks.
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Table 9. Selected measurements per source.

Source Selected Measurements FSS-W FSS-M EQ-W EQ-M
Aura awake duration, night heart/ respiratory rate

sleep duration, time to wake
time to sleep
light sleep duration
bed-in time, REM/ deep sleep duration
no. of times awaking

Scale weight, standing heart rate, pulse wave velocity
hydration/ muscle/ fat mass

Watch sleep duration, light sleep duration, bed-in times
step count, walking speed
deep sleep duration
time to sleep, awake duration

Fatigue q. fatigue level score

Sleep q. sleep quality score

Background q. age
‘whether the subject has fatigue symptoms’
height
disability level
‘whether the subject has depression’
‘whether the subject has pain symptoms’, years with MS

Predicting FSS-M and EQ-M. We straightforward apply the previous training pipeline, except now the total
number of examples in the datatset is N = 151, and we have labels as the mean of all reported FSS-W and EQ-W
scores per subject, which we refer to as FSS-M and EQ-M respectively. In this task, the relevant time series is no
longer a 10-day window but the entire 6-month time series for each participant. We extract only the days with
data entries and aggregate the time-varying measurements as before. Table 8 shows that our models outperform
baselines by 8% on average.
The motivation behind conducting this task is as follows: Firstly, this task aligns more closely to the current

state of clinical practise where a patient visits a clinician and fills in questionnaires roughly every 6 months;
showing that we can predict a score that represents the average response over the entire 6-month period in
addition to the weekly variations is beneficial to bringing a more stable view to the patients’ level of fatigue
symptoms and health status. Moreover, performing this task allows us to compare the selected important features
by a model trying to predict a weekly score versus an overall mean score, and draw insights about how a
dynamical and stable view differ in relation to the data recorded from our study.

Selected Feature study. Table ?? lists the measurements from each data source which have been selected over
the half the time in the leave-one-out setting for predicting the weekly (FSS-W, EQ-W) and overall (FSS-M, EQ-M)
scores. These readings are seen by the model as important in predicting FSS and EQ-5D-5L.
Time-varying Features. One of the biggest difference between the features selected by the weekly and mean
scores is that more standard deviation features are selected for FSS-M and EQ-M than for FSS-W and EQ-W. This
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is expected as the overall view considers a longer sequences and the variations in each measurement should be
more pronounced than the weekly case which only considers a time window of 10 days.

Another difference between the selected features by the weekly and overall scores lies in the body composition
readings, such as fat and hydration mass. FSS-W and EQ-W frequently select features of these readings but FSS-M
and EQ-M never do, this is also reflected in the absence of strong and significant correlation for these items in
the correlation matrix. This hints such body composition metrics may be related to fatigue and health status in
more dynamic and granular level.
Background Features. We see that for the EQ-W scores, important background features not only relates to the
physical information of the patient but also his/her emotional wellbeing (depression); this agrees with expectation
as the EQ-5D was designed to measure quality of life, which heavily relates to non-physiological metrics. One
interesting observation is that height and ‘whether the patient has depression’ are not frequently selected features
for predicting EQ-M but they are for EQ-W. Height differences may be more important for the weekly model due
to the limited information coming from a 10-day time frame. Whether a patient has depression or not may only
greatly impact their dynamic week-to-week scores but not an overall mean.

6 DISCUSSION
Our results imply several interesting observations about the significance of different features and data sources
depending on the task at hand, as well as the comparative performance of different variations of a machine
learning framework to predict FSS and EQ-5D scores from a mixture of wellness devices and self reports. We
make the following conclusions useful for future work:

• Having static background features per patient is an indispensable input to the framework, however there
is no need for a great number of such features. In general we observe that having 4 to 6 background
features are sufficient. Future study could explore asking for more in-depth responses to such background
information, e.g. quantifying the patient’s disability level using the standard scale of Expanded Disability
Status Scale (EDSS) [9].

• The residual-error adaptation strategy using each user’s first week as calibration works well and is the
most effective to account for patients who reported low-scores as they are a minority in our dataset and
also in the MS population. However this strategy may fail if the first week is itself an outlier. It may be
beneficial to indicate to the patient that his/her data from the first week of device usage would be used for
calibration and to offer options for indicating the need for recalibration when the patient feels that his/her
health has changed significantly.

• If the number and usage of data sources varies within a cohort of studied patients, a ensemble method
works well to cope with missing data. However, in case of limited resources, data sources or dataset size,
it is sensible to first consider a simpler and less comprehensive model which focuses on only a subset of
devices. This would have a larger detrimental effect in predicting FSS-W than EQ-W as seen in our results,
but it will still be a feasible option.

• Collecting data from self-reports in the form of daily questions (fatigue q. and night q.) does not contribute
to a significant difference (>2%) in model performance for the tasks considered. This may be related to the
inherent unreliability in self-reports and future frameworks should consider adding this data only if such
information is readily available or the collection is of low user burden.

Altogether, our results confirm the feasibility that weekly reported scores of Fatigue and Health State can be
accurately and regularly tracked in MS patients using data from connected wellness devices and a small number
of background features, with or without additional daily self-reports that patients may choose to provide. One
implication is that, now patients may be able to employ such a model to track themselves for long periods of
time at weekly intervals, simply by using a general model that requires their calibration once. Given that the
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disease does progress we might expect that the patients could re-calibrate every 6 months in order to improve
personal adaptations.

To pave way for work in this direction, future studies should seek to address the limitations in data collection.
It would also be interesting to have some incorporation of measurements of patients’ emotional state, for instance,
through use of smartphone data or Ecological Momentary Assessment (EMA) methods. Future work could also
collect information relating to environmental effects (e.g. temperature, humidity, which had been suggested in
MS literature to be possible symptom triggers). In order to better adapt to personal changes, low-user-burden
ways of calibrating the models could be investigated, e.g. asking for a binary indication of whether this week
feels more fatigued than last week.

6.1 Anticipated Applications
The predictive modelling performed in our study generates information on MS patient’s fatigue and health states
under a weekly and stable 6-month view. There is a wide range of potential scenarios where the information
generated would be useful, we discuss the motivating scenarios for different stakeholders:

• Patients: self-monitoring. The predicted information can supplement patients’ current records, so they
can develop a regular and holistic view of their conditions. Without the information generated by our
framework, currently patients will have an quantitative update to their status to record and share only when
they complete a survey, but by using our framework and connected wellness devices on a week-to-week
basis they will have a indication as to two key MS indicators, with zero effort on their part and not having
to remember to do anything (like answer a series of questions). More this is a much more shareable metric
than that would be available if the patient just tries to record a sense of how they feel. It could also help
patients reinforce and put into a quantitative fashion their feelings, e.g. rather than feeling bad for not
coping, they would be able to indicate a change in an independent scale.

• Patients: identifying Triggers. Currently, MS patients keep symptom diaries in order to identify symptom
triggers specific to themselves, e.g. exercising on a sunny versus rainy day. The collected by the devices
(e.g. walking speed) and the information generated from our framework (e.g. weekly fatigue level ) an
be organized and visualized through an app platform, together with other forms of data that the patient
may give the app access to (e.g. local weather). This is a convenient way for the patient to holistically
review different aspects of their conditions and gain understanding of their disease. A potential future
direction is to further develop recommendation systems integrated within such platform, so as to suggest
possible symptom triggers and encourage experimentation with suitable management strategies. Case in
point, most MS patients are physically inactive because they fear the potential fatigue despite evidence
that exercise can lessen fatigue in the long term[10]. A possible scenario is patients could use generated
fatigue patterns to quantify the benefit of exercise and to identify good times for exercising.

• Clinicians: evaluating interventions. Different forms of interventions to improve multiple sclerosis outcomes
include medication taking, diet and exercise, however, clinicians currently can only rely on verbal or
qualitative feedback from patients to judge the effectiveness of a prescribed treatment. With our framework,
patients can choose to share information generated about their conditions when discussing the intervention
effectiveness with their clinicians. Since such information will be on a scale of clinically-validated instru-
ments and comparable between different MS patients, clinicians can then judge on a case-by-case basis
whether the intervention is effective or not, with additional support from weekly information generated by
our model.

• Researchers: granular view of disease progression. Many studies have noted the scarcity of records about
MS at more fine-grained timescales, and pointed out that sparse observations might lead to overlooking
important dynamic fluctuations [20]. MS Researchers can explore the use of connected wellness devices to
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obtain a granular view of the condition and analyze the week-to-week information generated about the
patients. This could bring potential benefits in a number of areas in MS which has yet to be elucidated, e.g.
the disease progression from RRMS to SPMS is poorly understood but this has important implications for
treatment as many drugs effective when targeted at RRMS are useless with SPMS [19].

Finally, we anticipate that the information generated can be smoothly integrated into the current consumer
and clinical health space while minimizing any additional burden for patients or deviation from clinical practice.
Although patients do have to be equipped with smart devices and fill in some background information, but
once this is set up and calibrated, the burden of measuring week-to-week fatigue and health state scores is be
transferred to the devices and our framework. One strength of our framework is that patients may use any subset
of connected wellness devices for predictions to be made. Patients may use connected wellness devices naturally
and only fill in daily questions if they would also like to keep a digital record of their symptoms (MS patients
are already currently advised to keep symptom diaries in their own ways so this is only a matter of changing
recording platforms). In addition, our proposed framework also does not require continuous collection of ground
truth labels from the patients (just 1 label is needed for adaptation) so this is placing minimal burden on the
patients and will not require clinicians to administer extra symptom questionnaires.

7 CONCLUSION
As a lifelong debilitation disease that affects millions of people worldwide, MS needs to be better understood by
researchers and better monitored by patients. Having large-scale longitudinal data of MS patient’s condition
furthers this goal, and in this study we carried out the first investigation into methods to obtain such data
through ubiquitous sensing at ease. In particular, we focused our tasks on data relating to MS patient’s fatigue
and quality of life, through use of two widely used instruments by the MS community: Fatigue Severity Scale
(FSS) and EQ-5D index. We conducted a study to collect behavioral, physiological device data and self-reported
data from 198 MS patients, using connected wellness devices over 6 months. In our investigations, we proposed
an ensemble regression model which can cope with the data’s missing data, as well as adaptation techniques to
further improve generalization performance. Our models are able to achieve good prediction performance for the
tasks considered, namely predicting a per-participant mean reported score and a per-week per-participant score
for each metric. We find that, using data from connected devices, daily reports and background features, with the
unadapted model performance are in line with acceptable instrument errors, for FSS (SEM 0.7) we report MAE
1.00 and for EQ-5D (SEM 0.093) we report MAE 0.097. Adapted models improve these results further (FSS: MAE
0.58, EQ-5D: 0.065). These promising results in our dataset show the feasibility in continuous and unobtrusive
tracking of fatigue and health state, and potential for future replications into larger-scale replication studies,
which has positive implications for supporting MS patient disease management and clinical research.
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